

Reg.	No.	:	*	*			*	*												*	8				*		
------	-----	---	---	---	--	--	---	---	--	--	--	--	--	--	--	--	--	--	--	---	---	--	--	--	---	--	--

Name :

Eighth Semester B.Tech. Degree Examination, April 2015 (2008 Scheme)

08.804 : SATELLITE AND MOBILE COMMUNICATION (T)

Time: 3 Hours

Max. Marks: 100

Answer all questions. Each question carries 4 marks.

- Why uplink and downlink frequencies made different in satellite communication?
 Why uplink is made higher than downlink? Give the typical frequencies.
- Differentiate geostationary and geosynchronous orbits. State atleast three advantages of geostationary orbit.
- For a satellite circuit the individual carrier to noise spectral density ratios are (C/N)_{uplink} = 23dBHz (C/N)_{downlink} = 20dBHz, intermodulation 24dBHz. Calculate the overall carrier to noise ratio in decibels.
- 4. Briefly describe the mobile satellite networks.
- If a total of 33 MHz of bandwidth is allocated to a particular FDD cellular telephone system which uses two 25 kHz simplex channels to provide full duplex voice and control channels, compute the number of channels available per cell if a system uses
 - a) 4 cell reuse
 - b) 7 cell reuse.
- 6. State and briefly explain the four factors that influence small-scale fading.
- State and explain the multiple access technique used in GSM. Also differentiate FDD and TDD.

- Briefly describe the Ultra Wide band communication system giving emphasis to its application and multiple access technique.
- State atleast four advantage of CDMA system.
- 10. Define relative other cell interference factor in a CDMA cell. What is its range and what are the factors that affect the value of it? (10×4=40 Marks)

PART-B

Answer any two questions from each Module.

Module - 1

- 11. a) Describe a transmit receive type earth station with a block diagram.
 - b) Compare the performance of high power amplifiers used in earth station.
- 12. a) Define
 - a) Antenna look angles
 - b) Coverage angle and slant range.
 - b) A geostationary satellite is located at 90°W. Calculate the
 - a) Azimuth angle
 - b) Elevation angle and
 - c) Range for an earth station antenna at latitude 35°N and longitude 100° W.
- 13. a) Explain how a satellite is placed into geostationary orbit from earth.
 - b) What is meant by the earth eclipse of an earth-orbiting satellite? Why is it preferable to operate with a satellite positioned west, rather than east of earth station longitude.

Module - 2

- 14. A transmitter produces 50W of power, express the transmit power in :
 - a) dBm
 - b) dBW

If 50W is applied to a unity gain antenna with a 900 MHz carrier frequency find the power received in dBm at free space distance of 100 m from the antenna. What is P_r (10 km)?

Hint: Gain of Receiving antenna is unity.

TRIVANDRUM-1

- Explain any one of the outdoor propagation models? State the advantage and disadvantage of Lorzely

 — Rice and Okamura models.
- 16. a) With a block diagram explain GSM architecture.
 - b) Briefly describe the GSM channel types.

Module - 3

- 17. State the four diversity combining techniques. Explain atleast two of them.
- 18. A CDMA system has an information rate $R_b = 4800$ bps and spreading rate is 32. The system in error protected by a $-\frac{1}{2}$ convolutional code. Compare the degradation with and without FEC coding at BER of 10^{-5} and when there are seven interfering uses. With FEC what is the spreading factor? Given $\frac{E_b}{N_o}$ for BER $10^{-5} = 9.6$ dB.
- 19. a) What is meant by space division multiple access? State atleast four advantages. How SDMA improve the system capacity.
 - b) Briefly explain smart antennas used for mobile application. (6×10=60 Marks)